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Abstract. Several methods in data and shape analysis can be regarded
as transformations between metric spaces. Examples are hierarchical clus-
tering methods, the higher order constructions of computational persis-
tent topology, and several computational techniques that operate within
the context of data/shape matching under invariances.

Metric geometry, and in particular different variants of the Gromov-
Hausdorff distance provide a point of view which is applicable in different
scenarios. The underlying idea is to regard datasets as metric spaces,
or metric measure spaces (a.k.a. mm-spaces, which are metric spaces
enriched with probability measures), and then, crucially, at the same
time regard the collection of all datasets as a metric space in itself.
Variations of this point of view give rise to different taxonomies that
include several methods for extracting information from datasets.

Imposing metric structures on the collection of all datasets could be
regarded as a ”soft” construction. The classification of algorithms, or
the axiomatic characterization of them, could be achieved by imposing
the more ”rigid” category structures on the collection of all finite metric
spaces and demanding functoriality of the algorithms. In this case, one
would hope to single out all the algorithms that satisfy certain natural
conditions, which would clarify the landscape of available methods. We
describe how using this formalism leads to an axiomatic description of
many clustering algorithms, both flat and hierarchical.

Keywords: metric geometry, categories and functors, metric spaces,
Gromov-Hausdorff distance, Gromov-Wasserstein distance.

1 Introduction

Nowadays in the scientific community we are being asked to analyze and probe
large volumes of data with the hope that we may learn something about the
underlying phenomena producing these data. Questions such as “what is the
shape of data” are routinely formulated and partial answers to these usually
reveal interesting science.

An important goal of exploratory data analysis is to enable researchers to
obtain insights about the organization of datasets. Several algorithms have been
developed with the goal of discovering structure in data, and examples of the
different tasks these algorithms tackle are:
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– Visualization, parametrization of high dimensional data
– Registration/matching of datasets: how different are two given datasets?

what is a good correspondence between sub-parts of the datasets?
– What are the features present in the data? e.g. clustering, and number of

holes in the data.
– How to agglomerate/merge (partial) datasets?

Some of the standard concerns about the results produced by algorithms
that attempt to solve these tasks are: the dependence on a particular choice
of coordinates, the invariance to certain uninteresting deformations, the stabil-
ity/sensitivity to small perturbations, etc.

1.1 Visualization of Datasets

The projection pursuit method (see [42]) determines the linear projection on two
or three dimensional space which optimizes a certain criterion. It is frequently
very successful, and when it succeeds it produces a set in R

2 or R
3 which readily

visualizable. Other methods (Isomap [85], locally linear embedding [74], multi-
dimensional scaling [23]) attempt to find non-linear maps to Euclidean space
which preserve the distance functions on the data set to as high a degree as
possible. They also produce useful two and three dimensional versions of data
sets when they succeed.

Other interesting methods are the grand tour of Asimov [2], the parallel co-
ordinates of Inselberg [44], and the principal curves of Hastie and Stuetzle [38].

The Mapper algorithm [80] produces representations of data in a manner akin
to the Reeb graph [71] and is based on the idea of partial clustering and can
be considered as a hybrid method which combines the ability to parametrize
and visualize data, with the the ability to extract features, see Figure 1. This
algorithm has been used for shape matching tasks as well for studies of breast
cancer [65] and RNA [6]. The mapper algorithm is also closely related to the
cluster tree of Stuetzle [82].

1.2 Matching and Dissimilarity between Datasets

Measuring the dissimilarity between two objects is a task that is often performed
in data and shape analysis, and summaries or features from each of the objects
are typically compared to quantify this dissimilarity.

One important instance when computing the dissimilarity between is useful is
the comparison of the three dimensional shape of proteins following the underly-
ing scientific assumption that physically similar proteins have similar functional
properties [52].

The notion of zero-dissimilarity between data-sets can be dependent on the
application domain. For example, in object recognition, rigid motions specifically,
and more generally isometries, are often uninteresting and not important. The
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Fig. 1. A simplification of 3d models using the mapper algorithm [80]

same point applies to multidimensional data analysis, where particular choices
of the coordinate system should not affect the result of algorithms. Therefore,
the summaries/features extracted from the data must be insensitive to these
unimportant changes.

There exists a plethora of practical methods for object comparison and match-
ing, and most of them are based on comparing features. Given this rich and
disparate collection of available methods, it seems that in order to obtain a
deep understanding of the object matching problem and find possible avenues
of improvement, it is of great importance to discover and establish relation-
ships/connections between these methods. Theoretical understanding of these
methods and their relationships will lead to expressing conditions of validity of
each approach or family of approaches. This can no doubt help in

(a) guiding the choice of which method to use in a given practical application,
(b) deciding what parameters (if any) should be used for the particular method

chosen, and
(c) clearly determining what are the theoretical guarantees of a particular method

for the task at hand.
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1.3 Features

Often, data-sets can be difficult to comprehend. One example of this is the case
of high dimensional point clouds because our ability to visualize them is rather
limited. To deal with this situation, one must attempt to extract summaries
from the complicated data-set in order to capture robust global properties that
signal important qualitative features present, but not apparent, in the data.

The term feature typically applies to the result of applying a certain simplifica-
tion to a given dataset with the hope of retaining some useful information about
the original data. The aim is that after this simplification it would become easier
to quantify and/or visualize certain aspects of the dataset. Think for example of:

– computing the number of clusters in a given dataset, according to a given
algorithm (e.g. linkage based methods, spectral clustering, k-means, etc);

– obtaining a dendrogram: the result of applying a hierarchical clustering al-
gorithm to the data;

– computing the average distance to the barycenter of the dataset (assumed
to be embedded in Euclidean space);

– computing the average distance between all pairs of points in the dataset;
– computing a histogram of all the interpoint distances between pairs of points

in the dataset;
– computing persistent topology invariants of some filtration obtained from

the dataset [33,17,81].

In the area of shape analysis a few examples are: the size theory of Frosini and
collaborators [30,29,88,25,24,31]; the Reeb graph approach of Hilaga et al [39];
the spin images of Johnsson [49], the shape distributions of [68]; the canonical
forms of [28]; the Hamza-Krim approach [36]; the spectral approaches of [72,76];
the integral invariants of [58,69,21]; the shape contexts of [3].

The theoretical question of proving that a given family of features is indeed
able to signal proximity or similarity of objects in a reasonable way has hardly
been addressed. In particular, the degree to which two objects with similar fea-
tures are forced to be similar is in general does not seem to be well understood.

Conversely, one should ask the more basic question of whether the similarity
between two objects forces their features to be similar.

Stability of features. Thus, a problem of interest is studying the extent to
which a given feature is stable under perturbations of the dataset. In order to be
able to say something precise in this respect we introduce some mathematical
language.

To fix concepts we imagine that we have a collection D of all possible datasets,
and a collection F of all possible features. A feature map will be any map
f : D → F . Assume further that dD and dF are metrics or distance functions
on F and D, respectively. One says that f is quantitatively stable whenever one
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can find a non-decreasing function Ψ : [0,∞) → [0,∞) with Ψ(0) = 0 such that
for all X, Y ∈ D it holds that

dF (f(X), f(Y )) ≤ Ψ
(
dD(X, Y )

)
.

Note that this is stronger that the usual notion of continuity of maps, namely
that f(Xn) → f(X) as n ↑ ∞ whenever (Xn)n ⊂ D is a sequence of datasets
converging to X .

In subsequent sections of the paper we will describe instances of suitable
metric spaces (D, dD) and study the stability of different features.

2 Some Considerations

2.1 Importance of Stability and Classification of Algorithms

We claim that it would be desirable to elucidate the stability properties of the
main methods used in data analysis. The underlying situation is that the output
of data analysis algorithms are used in order to draw conclusions about the
phenomenon producing the data, hence it is of extreme importance to make sure
that these conclusions would not be grossly affected if the dataset were “noisy”
or “slightly perturbed”. In order to make sense of this question one needs to
ascribe mathematical meaning to “data”, “perturbations”, “algorithms”, etc.

In a similar vein, it would be clearly highly desirable to know what are the
theoretical properties enjoyed by the main algorithms used in data analysis (such
as clustering methods, for example). From a theoretical standpoint, it would be
very nice to be able to derive algorithms from a list of desirable or required
properties or axioms. In this respect, the works of Janowitz [47], Kleinberg [51],
and von Luxburg [90] are very prominent.

2.2 Stability and Matching: A Duality

Assuming that datasets X and Y in D are given, a natural way of comparing
them is to compute the dD distance between them (whatever that distance is).
Often times, however, features computed out of datasets constitute simpler struc-
tures than the datasets themselves, and as such, they are more readily amenable
to direct comparisons.

So, for a family of indices A consider here the stable family {fα, α ∈ A} of
feature maps fα : D → F , where α ∈ A and F is some feature space which is
metrized by the distance function dF . In line with the observation above, spaces
of features tend to have simpler structure than the space of datasets, and in
consequence the computation of dF usually appears to be simpler. This suggests
that in order to distinguish between two datasets X and Y one computes

ηA(X, Y ) := sup
α∈A

dF
(
fα(X), fα(Y )

)
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as a proxy for dD(X, Y ). This would be reasonable because since each of the
features fα, α ∈ A is stable, there exist functions Ψα such that

ηA(X, Y ) ≤ sup
α∈A

Ψα

(
dD(X, Y )

)
.

However, in order for this to be totally satisfactory it would be necessary to
establish in the reverse direction! For a given subclass of datasets O ⊂ D, the
main challenge is to find a stable family {fα, α ∈ A} that is rich enough so that
it will discriminate all objects in O: namely that if X, Y ∈ O and

fα(X) = fα(Y ) for all α ∈ A =⇒ X = Y .

In this respect the work of Olver [67], Boutin and Kemper [5] provide for example
families of features that are able to discriminate certain datasets under rigid
isometries. Other interesting and useful examples are ultrametric spaces, or in
more generality trees.

3 Datasets as Metric Spaces or Metric Measure Spaces

In many applications datasets can be represented as metric spaces (see Figure
2), that is, as a pair (X, dX) where dX : X × X → R

+ satisfies the three metric
properties: (a) dX(x, x′) = 0 if and only x = x′; (b) dX(x, x′) = dX(x′, x) for
all x, x′ ∈ X ; and (c) d(x, x′) ≤ dX(x, x′′) + dX(x′′, x′) for all x, x′, x′′ ∈ X .
Henceforth, G will denote the collection of all compact metric spaces.

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 d12 d13 d14 . . .
d12 0 d23 d24 . . .
d13 d23 0 d34 . . .
d14 d24 d34 0 . . .
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Fig. 2. Datasets as metric spaces: given the dataset, and a notion of “ruler”, one
induces a matrix containing the distance between all pairs of points; this distance is
application dependent

We introduce some notation: for a finite metric space (X, dX), its separation
is the number sep (X) := minx �=x′ dX(x, x′). For any compact X , its diameter
is diam (X) := maxx,x′ dX(x, x′).

For example in the case of Euclidean datasets, one has the following result:

Lemma 1 ([5]). Let X and Y be finite subsets of R
k s.t. there exists φ : X → Y

a bijection with ‖x − x′‖ = ‖φ(x) − φ(x′)‖ for all x, x′ ∈ X. Then, there exist a
rigid isometry Φ : R

d → R
d s.t. Y = Φ(X).
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This lemma implies that representing a Euclidean dataset (e.g. a protein, a
chemical compound, etc) as a metric space by endowing it with the ambient space
distance, one retains the original information up to ambient space isometries
(in this case, rotations, translations, and reflections). In particular, this is not
restrictive in any way, because anyhow in most conceivable cases one would not
want the output of an algorithm to depend on the coordinate system in which
the data is represented.

In the context of protein structure comparison, some ideas regarding the direct
comparison of distance matrices can be found for example in [40].

There are other types of datasets which are not Euclidean, but also fit in the
metric framework. One example is given by phylogenetic trees. Indeed, it is well
known [78] that trees are exactly those metric spaces (X, dX) that satisfy the
four point condition: for all x, y, z, w ∈ X

dX(x, y) + dX(z, w) ≤ max
(
dX(x, z) + dX(y, w), dX(x, w) + dX(z, y)

)
.

Another rich class of examples where the metric representation of objects
arises in problems in object recognition under invariance to bending transforma-
tions, see [55,28,63,64,12,41,70,11,9,10,8].

Fig. 3. Famous phylogenetic trees

mm-spaces. A metric measure space or mm-space for short, is a triple
(X, dX , μX) where (X, dX) is a metric space and μX is a Borel probability mea-
sure on X . In the finite case, μX reduces to a collection of non-negative weights,
one for each point x ∈ X , such that the sum of all weights equals 1. The in-
terpretation is that μX(x) measures the “importance” of x: points with zero
weight should not matter, points with lower values of the weight should be less
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prominent than points with larger values of the weight, etc. The representation
of objects as mm-spaces can thus incorporate more information than the purely
metric representation of data— when there is no application motivated choice
of weights one can resort to the giving the points the uniform distribution, that
is all points would have the same weight.

Henceforth, Gw will denote the collection of all compact mm-spaces.1

3.1 Equality of Datasets

What is the notion of equality between datasets? In the case when datasets
are represented as metric spaces, we declare that X, Y ∈ G are equal whenever
we cannot tell them apart by performing pairwise measurements of interpoint
distances. In mathematical language, in order to check whether X and Y are
equal we require that there be a surjective map φ : X → Y which preserves
distances and leaves no holes:

– dX(x, x′) = dY (φ(x), φ(x′)) for all x, x′ ∈ X ; and
– φ(X) = Y .

Such maps (when X and Y are compact) are necessarily bijective, and are called
isometries.

When datasets are represented as mm-spaces the notion of equality between
them must take into account the preservation of not only the pair-wise distance
information, but also that of the weights. One considers X, Y ∈ Gw to be equal,
whenever there exists an isometry φ : X → Y that also preserves the weights:
namely that (assume that X and Y are finite for simplicity) μX(x) = μY (φ(x)),
for all x ∈ X , see [60].

4 Metric Structures on Datasets

We now wish to produce a notion of distance between datasets that is not “too
rigid” and allows substantiating a picture such as that emerging from §2.2. We
will now describe the construction of distances in both G and Gw.

4.1 The Case of G
A suitable notion of distance between objects in G is the Gromov-Hausdorff
distance, which can be defined as follows. We first introduce the case of finite
objects and then explain the general construction.

Given objects X = {x1, . . . , xn} and Y = {y1, . . . , ym} with metrics dX and
dY , respectively, let R = ((rij)) ∈ {0, 1}n×m be such that

∑

i

rij ≥ 1 for all j and
∑

j

rij ≥ 1 for all i.

1 The sub-index w is meant to suggest “weighted metric spaces”.
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The interpretation is that any such binary matrix R represents a notion of friend-
ship between points in X and points in Y : namely, that xi and yj are friends if
and only if rij = 1. Notice that the conditions above imply that every point in
X has at least one friend in Y , and reciprocally, that every point in Y has at
least one friend in X .

Denote by R(X, Y ) the set of all such possible matrices, which we shall hence-
forth refer to as correspondences between X and Y .

Then, one defines the Gromov-Hausdorff distance between (X, dX) and (Y, dY )
as

dGH(X, Y ) :=
1
2

min
R

max
i,i′,j,j′

∣
∣dX(xi, xi′ ) − dX(xj , xj′)

∣
∣rijri′j′ ,

where the minimum is taken over R ∈ R(X, Y ).
The definition above has the interpretation that one is trying to match points

in X to points in Y in such a way that the metrics of X and Y are optimally
aligned.

The general case. In the full case of any pair of datasets X and Y (not
necessarily finite) in G, one needs to generalize the definition above. Let R(X, Y )
denote now the collection of all subsets R of the Cartesian product X × Y with
the property that the canonical coordinate projections π1 : X × Y → X and
π2 : X × Y → Y are surjective, when restricted to R.

Then the Gromov-Hausdorff distance between compact metric spaces X and
Y is defined as

dGH(X, Y ) :=
1
2

inf
R∈R(X,Y )

sup
(x,y),(x′,y′)∈R

∣
∣dX(x, x′) − dY (y, y′)

∣
∣. (1)

This definition indeed respects the notion of equality of objects that we put
forward in §3.1:

Theorem 1 ([35]). dGH is a metric on the isometry classes of G.

Another expression for the GH distance. Recall the definition of the Haus-
dorff distance between (closed) subsets A and B of a metric space (Z, dZ):

dZ
H

(
A, B

)
:= max

(
max
a∈A

min
b∈B

dZ(a, b), max
b∈B

min
a∈A

dZ(a, b)
)
.

Given compact metric spaces (X, dX) and (Y, dY ), consider all metrics d on
the disjoint union X � Y s.t.

– d(x, x′) = dX(x, x′), all x, x′ ∈ X ;
– d(y, y′) = dY (y, y′), all y, y′ ∈ Y .

Then, according to [13, Chapter 7]

dGH(X, Y ) := inf
d

d
(X�Y,d)
H

(
X, Y

)
,

where the infimum is taken over all the metrics d that satisfy the conditions
above.
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Remark 1. According to this formulation, computing the GH distance between
two finite metric spaces can be regarded as a distance matrix completion
problem. The functional is J(d) = max

(
maxx miny d(x, y), maxy minx d(x, y)

)

[60]. The number of constraints is roughly of order n3 for all the triangle in-
equalities, where n = |X | � |Y |.

Example: Euclidean datasets. Endowing objects embedded in R
d with the

(restricted) Euclidean metric makes the Gromov-Hausdorff distance invariant
under ambient rigid isometries [59]. In order to argue that similarity in the
Gromov-Hausdorff sense has a meaning which is compatible and comparable
with other notions of similarity that we have already come to accept as natural,
it is useful to look into the case of similarity of objects under rigid motions. One
of the most commonplace notions of rigid similarity is given by the Hausdorff
distance under rigid isometries [43] for which one has

Theorem 2 ([59]). Let X, Y ⊂ R
d be compact. Then

dGH((X, ‖ · ‖), (Y, ‖ · ‖)) ≤ inf
T

dR
d

H (X, T (Y )) ≤ cd · M 1
2 · (dGH((X, ‖ · ‖), (Y, ‖ · ‖))) 1

2 ,

where M = max(diam (X) ,diam (Y )) and cd is a constant that depends only
on d. The infimum over T above is taken amongst all Euclidean isometries.

Note that this theorem is a natural relaxation of the statement of Lemma 1.

4.2 The Case of Gw

Using ideas from mass transport it is possible to define a version of the Gromov-
Hausdorff distance that applies to datasets in Gw.

Fix a metric space (Z, dZ) and let P(Z) denote the collection of all the Borel
probability measures. For α, β ∈ P(Z), the Wasserstein distance (or order
p ≥ 1) on P(Z) is given by:

d
(Z,dZ )
W,p (α, β) :=

(∫∫

Z×Z

(
dZ(z, z′)

)p
μ(dz × dz′)

)1/p

,

where μ ∈ P(Z × Z) is a probability measure with marginals α and β. An
excellent reference for these concepts is the book of Villani [89].

An interpretation of this definition comes from thinking that one has a pile
of sand/dirt that must be moved from one location to another, where in the
destination one wants build something with this material, see Figure 4. In the
finite case (i.e. when all the probability measures are linear combinations of
deltas), μi,j encodes information about how much of the mass initially at xi

must be moved to xj , see Figure 4.
The Gromov-Wasserstein distance between mm-spaces X and Y is de-

fined as an optimal mass transportation problem on X � Y : for p ≥ 1
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z z

α β

zi j k

μ i,j

μ i,k

Fig. 4. An optimal mass transportation problem (in the Kantorovich formulation): the
pile of sand/dirt on the left must be moved to another location on the right with the
purpose of assembling a building or structure

dGW,p(X, Y ) := inf
d

d
(X�Y,d)
W,p (μX , μY ),

where as before d is a metric on X � Y gluing X and Y .
The definition above is due to Sturm [83]. Notice that the underlying optimiza-

tion problems that one needs to solve now are of continuous nature as opposed to
the combinatorial optimization problems yielded by the GH distance. Another
non-equivalent definition of the Gromov-Wasserstein distance is proposed in [60]
whose discretization is more tractable.

As we will see ahead, several features become stable in the GW sense.

4.3 Stability of Hierarchical Clustering Methods

Denote by P(X) the set of all partitions of the finite set X .
A dendrogram over a finite set X is a function θX : [0,∞) → P(X) with the

following properties:

1. θX(0) = {{x1}, . . . , {xn}}.
2. There exists t0 s.t. θX(t) is the single block partition for all t ≥ t0.
3. If r ≤ s then θX(r) refines θX(s).
4. For all r there exists ε > 0 s.t. θX(r) = θX(t) for t ∈ [r, r + ε].

Let D(X) denote the collection of all possible dendrograms over a given finite
set X .

Hierarchical clustering methods are maps H from the collection of all finite
metric spaces into the collection of all dendrograms, such that (X, dX) is mapped
into an element of D(X).

Standard examples of clustering methods are single, complete and average
linkage methods [46].

A question of great interest is whether any of these clustering methods is
stable to perturbations in the input metric spaces.

Linkage based agglomerative HC methods. Here we review the basic pro-
cedure of linkage based hierarchical clustering methods:



12 F. Mémoli

1 1

1 1+ɛ

1

1 2+ɛ

p
1

p
2

p
3

p
1

p
2

p
3

p
1

p
2

p
3

p
1

p
2

p
3

Fig. 5. Complete Linkage is not stable to small perturbations in the metric. On the
left we show two metric spaces that are metrically very similar. To the right of each of
them we show their CL dendrogram outputs. Regardless of ε > 0, the two outputs are
always very dissimilar.

Assume (X, dX) is a given finite metric space. In this example, we use the
formulas for CL but the structure of the iterative procedure in this example is
common to all HC methods [46, Chapter 3]. Let θ be the dendrogram to be
constructed in this example.

1. Set X0 = X and D0 = dX and set θ(0) to be the partition of X into
singletons.

2. Search the matrix D0 for the smallest non-zero value, i.e. find δ0 = sep (X0) ,
and find all pairs of points

{
(xi1 , xj1 ), (xi2 , xj2) . . . , (xik

, xjk
)} at distance δ0

from eachother, i.e. d(xiα , xjα) = δ0 for all α = 1, 2, . . . , k, where one orders
the indices s.t. i1 < i2 < . . . < ik.

3. Merge the first pair of elements in that list, (xi1 , xj1), into a single group.
The procedure now removes (xi1 , xj1) from the initial set of points and adds a
point c to represent the cluster formed by both: define X1 =

(
X0\{xi1 , xj1}

)∪
{c}. Define the dissimilarity matrix D1 on X1×X1 by D1(a, b) = D0(a, b) for
all a, b �= c and D1(a, c) = D1(c, a) = max

(
D0(xi1 , a), D0(xj1 , a)

)
(this step

is the only one that depends on the choice corresponding to CL). Finally,
set

θ(δ) = {xi1 , xj1} ∪
⋃

i�=i1,j1

{xi}.

4. The construction of the dendrogram θ is completed by repeating the previous
steps until all points have been merged into a single cluster.

The tie breaking strategy used in step 3 results in the algorithm producing
different non-isomorphic outputs depending on the labeling of the points. This
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is undesirable, but can be remedied by defining certain versions of all the linkage
based HC methods that behave well under permutations [18] .

Unfortunately, even these “patched” versions of AL and CL fail to exhibit
stability, see Figure 5.

It turns out, however, that single linkage does enjoy stability. Before we phrase
the precise result we need to introduce the ultrametric representation of dendro-
grams. Furthermore, as we will see in 5, there’s a sense in which SLHC is the
only HC method that can be stable.

Dendrograms as ultrametric spaces. The representation of dendrograms as
ultrametrics is well known [48,37,46].

Theorem 3 ([18]). Given a finite set X, there is a bijection Ψ : D(X) →
U(X) between the collection D(X) of all dendrograms over X and the collection
U(X) of all ultrametrics over X such that for any dendrogram θ ∈ D(X) the
ultrametric Ψ(θ) over X generates the same hierarchical decomposition as θ, i.e.

(∗) for each r ≥ 0, x, x′ ∈ B ∈ θ(r) ⇐⇒ Ψ(θ)(x, x′) ≤ r.

Furthermore, this bijection is given by

Ψ(θ)(x, x′) = min{r ≥ 0|x, x′ belong to the same block of θ(r)}. (2)

See Figure 6.

x 1

x 2

x 3

x 4

r 1 r 2 r 3

uθ

x 1 x 2 x 3 x 4

x 1 0 r 1 r 3 r 3
x 2 r 1 0 r 3 r 3
x 3 r 3 r 3 0 r 2
x 4 r 3 r 3 r 2 0

Fig. 6. A graphical representation of a dendrogram θ over X = {x1, x2, x3, x3} and
the corresponding ultrametric uθ := Ψ(θ). Notice for example, that according to (2),
uθ(x1, x2) = r1 since r1 is the first value of the (scale) parameter for which x1 and x2

are merged into the same cluster. Similarly, since x1 and x3 are merged into the same
cluster for the first time when the parameter equals r3, then uθ(x1, x3) = r3.

Let U ⊂ G denote the collection of all (compact) ultrametric spaces. It fol-
lows from Theorem 3 that one can regard HC methods as maps H : G → U .
In particular [18], SLHC can be regarded as the map HSL that assigns (X, dX)
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with (X, uX), where uX is the maximal subdominant ultrametric relative to dX .
This is given as

uX(x, x′) := min
{

max
i=0,...,k−1

dX(xi, xi+1), s.t. x = x0, . . . , xk = x′
}

. (3)

Stability and convergence of SLHC. In contrast with the situation for
complete and average linkage HCMs, we have the following statement concerning
the quantitative stability of SLHC:

Theorem 4 ([18]). Let (X, dX) and (Y, dY ) be two finite metric spaces. Then,

dGH(HSL(X, dX), HSL(Y, dY )) ≤ dGH((X, dX), (Y, dY )).

Invoking the ultrametric representation of dendrograms and using Theorem 4,
[18] proves the following convergence result, see Figure 7.

Theorem 5. Let (Z, dZ , μZ) be an mm-space and write supp [μZ ] =
⋃

α∈A Z(α)

for a finite index set A and {Z(α)}α∈A a collection of disjoint, compact, path-
connected subsets of Z. Let (A, uA) be the ultrametric space where uA is the max-
imal subdominant ultrametric with respect to WA(α, α′) := minz∈Z(α),z′∈Z(α′)

dZ(z, z′), for α, α′ ∈ A.
For each n ∈ N, let Xn = {z1, z2, . . . , zn} be a collection of n indepen-

dent random variables (defined on some probability space Ω with values in Z)
with distribution μZ , and let dXn be the restriction of dZ to Xn × Xn. Then,
HSL(Xn, dXn) n−→ (A, uA) in the Gromov-Hausdorff sense μZ-almost surely.

4.4 Stability of Vietoris-Rips Barcodes

Much in the same way as standard flat clustering can be understood as the
zero-dimensional version of the notion of homology, hierarchical clustering can
be regarded as the zero-dimensional version of persistent homology [27].

The notion of Vietoris-Rips persistent barcodes provides a precise sense in
which the above statement is true. For a given finite metric space (X, dX) and
r ≥ 0, let Rr(X) denote the simplicial complex with vertex set X where σ =
[x0, x1, . . . , xk] ∈ Rr(X, dX) if and only if maxi,j dX(xi, xj) ≤ r. This is called
the Vietoris-Rips simplicial complex (with parameter r). Then, the family

R(X, dX) :=
{
Rr(X, dX), r ≥ 0

}

constitutes a filtration, in the sense that

Rr(X, dX) ⊆ Rs(X, dX), whenever s ≥ r.

In the sequel we may abbreviate Rr(X) for Rr(X, dX), and similarly for R(X).
Now, passing to homology with field coefficients, this inclusion gives rise to a
pair of vector spaces and a linear map between them:

φs
r : H∗(Rr(X) −→ H∗(Rs(X)).
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Fig. 7. Illustration of Theorem 5. Top: A space Z composed of 3 disjoint path connected
parts, Z(1), Z(2) and Z(3). The black dots are the points in the finite sample Xn. In the
figure, wij = WA(ai, aj), 1 ≤ i �= j ≤ 3. Bottom Left: The dendrogram representation
of (Xn, uXn) := HSL(Xn). Bottom Right: The dendrogram representation of (A,uA).
Note that uA(a1, a2) = w23, uA(a1, a3) = w13 and uA(a2, a3) = w23. As n → ∞,
(Xn, uXn) → (A, uA) a.s. in the Gromov-Hausdorff sense, see text for details.

In more detail, if 0 = α0 < α1 < . . . < αm = diam (X) are the distinct values
assumed by dX , then one obtains the persistent vector space:

H∗(Rα0(X))
φ1

0−→H∗(Rα1(X))
φ2

1−→ H∗(Rα2(X))
φ3

2−→ · · ·

· · · φm−1
m−2−→ H∗(Rαm−1(X))

φm
m−1−→ H∗(Rαm(X)).

It is well known [91] that there is a classification of such objects in terms of a
finite multisets of points in the extended plane R

2
, called the persistence diagram

of R(X), and denoted D∗R(X) which is contained in the union of the extended
diagonal Δ = {(x, x) : x ∈ R} and of the grid {α0, · · · , αm}×{α0, · · · , αm, α∞ =
+∞}. The multiplicity of the points of Δ is set to +∞, while the multiplicities
of the (αi, αj), 0 ≤ i < j ≤ +∞, are defined in terms of the ranks of the linear
transformations φj

i = φj
j−1 ◦ · · · ◦ φi+1

i [20].

The bottleneck distance d∞B (A, B) between two multisets in (R
2
, l∞) is the

quantity minγ maxp∈A ‖p−γ(p)‖∞, where γ ranges over all bijections from A to
B. Then, one obtains the following generalization of Theorem 4.

Theorem 6 ([20]). Let (X, dX) and (Y, dY ) be any two finite metric spaces.
Then for all k ≥ 0,

1
2
d∞B

(
DkR(X), DkR(Y )

) ≤ dGH(X, Y ).
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This type of results are of great importance for applications of the Vietoris-Rips
barcodes to data analysis.

4.5 Object Matching: More Details

Some features of mm-spaces. We define a few simple isomorphism invariants,
or features, of mm-spaces, many of which will be used in §4.5 to establish lower
bounds for the metrics we will impose on Gw. All the features we discuss below
have are routinely used in the data analysis and object matching communities.

Definition 1 (p-diameters). Given a mm-space (X, dX , μX) and p ∈ [1,∞]
we define its p-diameter as

diamp (X) :=
(∫

X

∫

X

(
dX(x, x′)

)p
μX(dx)μX(dx′)

)1/p

for 1 ≤ p < ∞.

Definition 2. Given p ∈ [1,∞] and an mm-space (X, dX , μX) we define the
p-eccentricity function of X as

sX,p : X → R
+ given by x �→

(∫

X

dX(x, x′)pμ(dx′)
)1/p

for 1 ≤ p < ∞.

Hamza and Krim proposed using eccentricity functions (with p = 2) for describ-
ing objects in [36]. Ideas similar to those proposed in [36] have been revisited
recently in [45]. See also Hilaga et al. [39]. Eccentricities are also routinely used
as part of topological data analysis algorithms such as mapper [80].

Definition 3 (Distribution of distances). To an mm-space (X, dX , μX) we
associate its distribution of distances:

fX : [0,diam (X)] → [0, 1] given by t �→ μX ⊗ μX

({(x, x′)|dX(x, x′) ≤ t}).
See Figure 8 and [5,68].

Definition 4 (Local distribution of distances). To a mm-space (X, dX , μX)
we associate its local distribution of distances defined by:

hX : X × [0,diam (X)] → [0, 1] given by (x, t) �→ μX

(
BX(x, t)

)
.

See Figure 9. The earliest use of an invariant of this type known to the author
is in the work of German researchers [4,50,1]. The so called shape context
[3,79,75,14] invariant is closely related to hX .

More similar to hX is the invariant proposed by Manay et al. in [58] in the
context of planar objects. This type of invariant has also been used for three
dimensional objects [21,32]. More recently, in the context of planar curves, similar
constructions have been analyzed in [7]. See also, [34].
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Fig. 8. Distribution of distances: from a dataset to the mm-space representation and
from it to the distribution of distances

Remark 2 (Local distribution of distances as a proxy for scalar curva-
ture). There is an interesting observation that in the class Riem ⊂ Gw of closed
Riemannian manifolds local distributions of distance are intimately related to
curvatures. Let M be an n-dimensional closed Riemannian manifold which we
regard as an mm-space by endowing it with the geodesic metric and with prob-
ability measure given by the normalized volume measure. Using the well known
expansion [77] of the Riemannian volume of a ball of radius t centered at x ∈ M
one finds:

hM (x, t) =
ωn(t)

Vol (M)

(
1 − SM (x)

6(n + 2)
t2 + O(t4)

)
,

where SM (x) is the scalar curvature of M at x, ωn(t) is the volume of a ball of
radius t in R

n and O(t4) is a term whose decay to 0 as t ↓ 0 is faster than t4.
One may then argue that local shape distributions play a role of generalized

notions of curvature.

Fig. 9. Local distribution of distances: from a dataset to the mm-space representation
and from it the local distribution of distances. To each point on the object one assigns
the distribution of distance from this point to all other points on the object.
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Precise bounds

Definition 5. For X, Y ∈ Gw define

FLB(X, Y ) :=
1
2

inf
μ∈M(μX ,μY )

(∫

X×Y

|sX,1(x) − sY,1(y)| μ(dx × dy)
)

;

SLB(X, Y ) :=
∫ ∞

0

|fX(t) − fY (t)| dt;

TLB(X, Y ) :=
1
2

min
μ∈M(μX ,μY )

∫

X×Y

(∫ ∞

0

∣
∣hX(x, t) − hY (y, t)

∣
∣ dt

)
μ(dx × dy).

For finite X and Y , computing the (exact) value of each of the quantities in the
definition reduces to solving linear programming problems [60].

We now can state the following theorem asserting the stability of the features
discussed in this section:

Theorem 7 ([60]). For all X, Y ∈ Gw, and all p ≥ 1

dGW,p(X, Y ) ≥
{

TLB(X, Y ) ≥ FLB(X, Y ) ≥ 1
2 |diam1 (X) − diam1 (Y ) |.

SLB(X, Y ).

Bounds of this type, besides establishing the quantitative stability of the differ-
ent intervening features, have the added usefulness that in practice they may be
utilized in layered comparison of objects: those bounds involving simpler invari-
ants are frequently easier to compute, whereas those involving more powerful
features most often require more effort. Furthermore, hierarchical bounds of this
nature that interconnect different approaches proposed in the literature allow
for a better understanding of the landscape of different existing techniques, see
Figure 10.

Fig. 10. Having a hierarchy (arrows should be read as ≥ symbols) of lower bounds such
the one suggested in the figure can help in matching tasks: the strategy that suggests
itself is to start the comparison using the weaker bounds and gradually increase the
complexity

Also, different families of lower bounds for the GH distance have recently been
found [61]; these incorporate features similar to those of [56,86].
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Spectral versions of the GH and GW distances. It is possible to obtain
a hierarchy of lower bounds similar to the ones above but in the context of
spectral methods [62], see Figure 12. The motivation comes from the so called
Varadhan’s Lemma: if X is a compact Riemannian manifold without boundary,
and kX denotes the heat kernel of X , then one has

Lemma 2 ([66]). For any compact Riemannian manifold without boundary X,

lim
t↓0

( − 4t lnkX(t, x, x′)
)

= d2
X(x, x′),

for all x, x′ ∈ X. Here dX(x, x′) is the geodesic distance between x and x′ on X.

The spectral representation of objects (see Figure 12), and in particular shapes
is interesting because it readily encodes a notion of scale. This scale parame-
ter (the t parameter in the heat kernel) permits reasoning about similarity of
shapes at different levels of “blurring” or “smoothing”, see Figure 11. A (still
not thoroughly satisfactory) interpretation of t as a scale parameter arises from
the following observations:

– For t ↓ 0+, kX(t, x, x) � (4πt)−d/2
(
1 + 1

6SX(x) + . . .
)
, where d is the di-

mension of X . Recall that SX is the scalar curvature— therefore for small
enough t, one sees local information about X .

– For t → ∞, kX(t, x, x′) → 1
Vol(X) . Hence, for large t all points “look the

same”.
– Pick n ∈ N and ε > 0 and let Lg = (R, g, λ) for g(x) = 1 + ε cos(2πxn),

then the homogenized metric is g = 1. Then, by results due to Tsuchida and
Davies [87,26] one has that

sup
x,x′∈R

∣
∣kg(t, x, x′) − kg(t, x, x′)

∣
∣ ≤ C

t
as t ↑ ∞.

Since for Riemannian manifolds X and Y , by Varadhan’s lemma, the heat
kernels kX and kY determine the geodesic metrics dX and dY , respectively, this
suggests defining spectral versions of the GH and GW distances. For each
p ≥ 1, one defines [62]

dspec
GW,p(X, Y ) :=

1
2

inf
μ

sup
t>0

Fp

(
kX(t, ·, ·), kY (t, ·, ·), μ)

,

where Fp is a certain functional that depends on both heat kernels and the mea-
sure coupling μ (see [62]).2 The interpretation is that one takes the supremum
over all t as way of choosing the most discriminative scale.

One has:

Theorem 8 ([62]). dspec
GW,p defines a metric on the collection of (isometry classes

of) Riemannian manifolds.

2 Here μ is a measure coupling between the normalized volume measures of X and Y .
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A large number of spectral features are quantitatively stable under dspec
GH

[62]. Examples are the spectrum of the Laplace-Beltrami operator [73], features
computed from the diffusion distance, [53,22], and the heat kernel signature [84].

A more precise framework for the geometric scales of subsets of R
d is worked

out in [54].

Fig. 11. A bumpy sphere at different levels of smoothing

5 Classification of Algorithms

In the next section, we will give a brief description of the theory of categories
and functors, an excellent reference for these ideas is [57].

5.1 Brief Overview of Categories and Functors

Categories are mathematical constructs that encode the nature of certain objects
of interest together with a set of admissible maps between them.

Definition 6. A category C consists of:

– A collection of objects ob(C) (e.g. sets, groups, vector spaces, etc.)
– For each pair of objects X, Y ∈ ob(C), a set

MorC(X, Y ), the morphisms from X to Y (e.g. maps of sets from X to Y ,
homomorphisms of groups from X to Y , linear transformations from X to
Y , etc. respectively)

– Composition operations:
◦ : MorC(X, Y ) × MorC(Y, Z) → MorC(X, Z), corresponding to composi-
tion of set maps, group homomorphisms, linear transformations, etc.

– For each object X ∈ C, a distinguished element idX ∈ MorC(X, X), called
the identity morphism.

The composition is assumed to be associative in the obvious sense, and for any
f ∈ MorC(X, Y ), it is assumed that idY ◦ f = f and f ◦ idX = f .

Definition 7 (C, a category of outputs of standard clustering schemes).
Let Y be a finite set, PY ∈ P(Y ), and f : X → Y be a set map. We define f∗(PY )
to be the partition of X whose blocks are the sets f−1(B) where B ranges over
the blocks of PY . We construct the category C of outputs of standard clustering
algorithms with ob(C) equal to all possible pairs (X, PX) where X is a finite
set and PX is a partition of X: PX ∈ P(X). For objects (X, PX) and (Y, PY )
one sets MorC

(
(X, PX), (Y, PY )

)
to be the set of all maps f : X → Y with the

property that PX is a refinement of f∗(PY ).
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Fig. 12. A physics based way of characterizing/measuring a shape. For each pair of
points x and x′ on the shape X, one heats a tiny area around point x to a very high
temperature in a very short interval of time around t = 0. Then, one measures the tem-
perature at point x′ for all later times and plots the resulting graph of the heat kernel
kX(t, x, x′) as a function of t. The knowledge of these graphs for all x, x′ ∈ X and t > 0
translates into knowledge of the heat kernel of X (the plot in the figure corresponds
to x �= x′). In contrast, one can think that a geometer’s way of characterizing the
shape would be via the use of a geodesic ruler that can be used for measuring distances
between all pairs of points on X, see Figure 2. According to Varadhan’s Lemma, both
approaches are equivalent in the sense that they both capture the same information
about X.

Example 1. Let X be any finite set, Y = {a, b} a set with two elements, and
PX a partition of X . Assume first that PY = {{a}, {b}} and let f : X → Y be
any map. Then, in order for f to be a morphism in MorC

(
(X, PX), (Y, PY )

)
it

is necessary that x and x′ be in different blocks of PX whenever f(x) �= f(x′).
Assume now that PY = {a, b} and g : Y → X . Then, the condition that g ∈
MorC

(
(Y, PY ), (X, PX)

)
requires that g(a) and g(b) be in the same block of PX .

We will also construct a category of persistent sets, which will constitute the
output of hierarchical clustering functors.

Definition 8 (P, a category of outputs of hierarchical clustering
schemes). Let (X, θX), (Y, θY ) be persistent sets. A map of sets f : X → Y
is said to be persistence preserving if for each r ∈ R, we have that θX(r) is a
refinement of f∗(θY (r)). We define a category P whose objects are persistent
sets, and where MorP((X, θX), (Y, θY )) consists of the set maps from X to Y
which are persistence preserving.



22 F. Mémoli

Three categories of finite metric spaces. We will describe three cate-
gories Miso, Minj , and Mgen, whose collections of objects will all consist of
the collection of finite metric spaces M. For (X, dX) and (Y, dY ) in M, a map
f : X → Y is said to be distance non increasing if for all x, x′ ∈ X , we have
dY (f(x), f(x′)) ≤ dX(x, x′). It is easy to check that composition of distance
non-increasing maps are also distance non-increasing, and it is also clear that
idX is always distance non-increasing. We therefore have the category Mgen,
whose objects are finite metric spaces, and so that for any objects X and Y ,
MorMgen(X, Y ) is the set of distance non-increasing maps from X to Y . It is
clear that compositions of injective maps are injective, and that all identity
maps are injective, so we have the new category Minj , in which MorMinj (X, Y )
consists of the injective distance non-increasing maps. Finally, if (X, dX)
and (Y, dY ) are finite metric spaces, f : X → Y is an isometry if f is bijec-
tive and dY (f(x), f(x′)) = dX(x, x′) for all x and x′. It is clear that as above,
one can form a category Miso whose objects are finite metric spaces and whose
morphisms are the isometries. Furthermore, one has inclusions

Miso ⊆ Minj ⊆ Mgen (4)

of subcategories (defined as in [57]). Note that although the inclusions are bijec-
tions on object sets, they are proper inclusions on morphism sets.

Remark 3. The category Mgen is special in that for any pair of finite metric
spaces X and Y , MorMgen(X, Y ) �= ∅. Indeed, pick y0 ∈ Y and define φ : X → Y
by x �→ y0 for all x ∈ X . Clearly, φ ∈ MorMgen(X, Y ). This is not the case for
Minj since in order for MorMinj (X, Y ) �= ∅ to hold it is necessary (but not
sufficient in general) that |Y | ≥ |X |.

Functors and functoriality. Next we introduce the key concept in our discus-
sion, that of a functor. We give the formal definition first, and several examples
will appear as different constructions that we use in the paper.

Definition 9 (Functor). Let C and D be categories. Then a functor from C
to D consists of:

– A map of sets F : ob(C) → ob(D).
– For every pair of objects X, Y ∈ C a map of sets Φ(X, Y ) : MorC(X, Y ) →

MorD(FX, FY ) so that
1. Φ(X, X)(idX) = idF (X) for all X ∈ ob(C), and
2. Φ(X, Z)(g ◦ f) = Φ(Y, Z)(g) ◦ Φ(X, Y )(f) for all f ∈ MorC(X, Y ) and

g ∈ MorC(Y, Z).

Given a category C, an endofunctor on C is any functor F : C → C.

Remark 4. In the interest of clarity, we will always refer to the pair (F, Φ) with
a single letter F . See diagram (6) below for an example.
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Example 2 (Scaling functor). For any λ > 0 we define an endofunctor σλ :
Mgen → Mgen on objects by σλ(X, dX) = (X, λ · dX) and on morphisms by
σλ(f) = f . One easily verifies that if f satisfies the conditions for being a mor-
phism in Mgen from (X, dX) to (Y, dY ), then it readily satisfies the conditions of
being a morphism from (X, λ ·dX) to (Y, λ ·dY ). Clearly, σλ can also be regarded
as an endofunctor in Miso and Minj .

Similarly, we define a functor sλ : P → P by setting sλ(X, θX) = (X, θλ
X),

where θλ
X(r) = θX( r

λ ).

5.2 Clustering Algorithms as Functors

The notion of categories, functors and functoriality provide useful framework for
studying algorithms. One first defines a class of input objects I and also a class
of output objects O. Moreover, one associates to each of these classes a class of
natural maps, the morphisms, between objects, making them into categories I
and O. For the problem of HC for example, the input class is the set of finite
metric spaces and the output class is that of dendrograms. An algorithm is to
be regarded as a functor between a category of input objects and a category of
output objects.

An algorithm will therefore be a procedure that assigns to each I ∈ I an
output OI ∈ O with the further property that it respects relations between
objects in the following sense. Assume I, I ′ ∈ I such that there is a “natural
map” f : I → I ′. Then, the algorithm has to have the property that the relation
between OI and OI′ has to be represented by a natural map for output objects.

Remark 5. Assume that I is such that MorI(X, Y ) = ∅ for all X, Y ∈ I with
X �= Y . In this case, since there are no morphisms between input objects any
functor A : I → O can be specified arbitrarily on each X ∈ ob(O). It is much
more interesting and arguably more useful to consider categories with non-empty
morphism sets.

More precisely. We view any given clustering scheme as a procedure which
takes as input a finite metric space (X, dX), and delivers as output either an
object in C or P :

– Standard clustering: a pair (X, PX) where PX is a partition of X . Such
a pair is an object in the category C.

– Hierarchical clustering: a pair (X, θX) where θX is a persistent set over
X . Such a pair is an object in the category P .

The concept of functoriality refers to the additional condition that the clus-
tering procedure should map a pair of input objects into a pair of output objects
in a manner which is consistent with respect to the morphisms attached to the
input and output spaces. When this happens, we say that the clustering scheme
is functorial. This notion of consistency is made precise in Definition 9 and
described by diagram (6). Let M stand for any of Mgen, Minj or Miso.

According to Definition 9, in order to view a standard clustering scheme as a
functor C : M → C we need to specify:
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(1) how it maps objects of M (finite metric spaces) into objects of C, and
(2) how a morphism f : (X, dX) → (Y, dY ) between two objects (X, dX) and

(Y, dY ) in the input category M induces a map in the output category C,
see diagram (6).

(X, dX)

C

��

f �� (Y, dY )

C

��
(X, PX)

C(f) �� (Y, PY )

(5)

Similarly, in order to view a hierarchical clustering scheme as a functor H :
M → P we need to specify:

(1) how it maps objects of M (finite metric spaces) into objects of P , and
(2) how a morphism f : (X, dX) → (Y, dY ) between two objects (X, dX) and

(Y, dY ) in the input category M induces a map in the output category P ,
see diagram (6).

(X, dX)

H

��

f �� (Y, dY )

H

��
(X, θX)

H(f) �� (Y, θY )

(6)

Precise constructions will be discussed ahead.
We have 3 possible “input” categories ordered by inclusion (4). The idea is that

studying functoriality over a larger category will be more stringent/demanding
than requiring functoriality over a smaller one. We will consider different clus-
tering algorithms and study whether they are functorial over our choice of the
input category. The least demanding one, Miso basically enforces that clustering
schemes are not dependent on the way points are labeled.

We will describe uniqueness results for functoriality over the most stringent
category Mgen, and also explain how relaxing the conditions imposed by the
morphisms in Mgen, namely, by restricting ourselves to the smaller but inter-
mediate category Minj , one allows more functorial clustering algorithms.

5.3 Results for Standard Clustering

Let (X, dX) be a finite metric space. For each r ≥ 0 we define the equivalence
relation ∼r on X given by x ∼r x′ if and only if there exist x0, x1, . . . , xk ∈ X
with x = x0, x′ = xk and dX(xi, xi+1) ≤ r for all i = 0, 1, . . . , k − 1.

Definition 10. For each δ > 0 we define the Vietoris-Rips clustering func-
tor

Rδ : Mgen → C

as follows. For a finite metric space (X, dX), we set Rδ(X, dX) to be (X, PX(δ)),
where PX(δ) is the partition of X associated to the equivalence relation ∼δ. We
define how Rδ acts on maps f : (X, dX) → (Y, dY ): Rδ(f) is simply the set map
f regarded as a morphism from (X, PX(δ)) to (Y, PY (δ)) in C.
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The Vietoris-Rips functor is actually just single linkage clustering as it is
well known, see [15,18].

By restricting Rδ to the subcategories Miso and Minj , we obtain functors
Riso

δ : Miso → C and Rinj
δ : Minj → C. We will denote all these functors by Rδ

when there is no ambiguity.
It can be seen [19] that the Vietoris-Rips functor is surjective: Among the

desirable conditions singled out by Kleinberg [51], one has that of surjectivity
(which he referred to as “richness”). Given a finite set X and PX ∈ P(X),
surjectivity calls for the existence of a metric dX on X such that Rδ(X, dX) =
(X, PX).

For M being any one of our choices Miso, Minj or Mgen, a clustering func-
tor in this context will be denoted by C : M → C. Excisiveness of a clustering
functor refers to the property that once a finite metric space has been parti-
tioned by the clustering procedure, it should not be further split by subsequent
applications of the same algorithm.

Definition 11 (Excisive clustering functors). We say that a clustering
functor C is excisive if for all (X, dX) ∈ ob(M), if we write C(X, dX) =
(X, {Xα}α∈A), then

C
(
Xα, dX |Xα×Xα

)
= (Xα, {Xα}) for all α ∈ A.

It can be seen that the Vietoris-Rips functor is excisive.
However, there exist non-excisive clustering functors in Minj .

Example 3 (A non-excisive functor in Minj). For each finite metric space
X let ηX := (sep (X))−1. Consider the clustering functor R̂ : Minj → C defined
as follows: for a finite metric space (X, dX), we define R̂(X, dX) to be (X, P̂X),
where P̂X is the partition of X associated to the equivalence relation ∼ηX on
X . That R̂ is a functor follows from the fact that whenever φ ∈ MorMinj (X, Y )
and x ∼ηX x′, then φ(x) ∼ηY φ(x′).

Now, the functor R̂ is not excisive in general. An explicit example is the
following: Consider the metric space (X, dX) depicted in Figure 13, where the
metric is given by the graph metric on the underlying graph. Note that sep (X) =
1/2 and thus ηX = 2. We then find that R̂(X, dX) = (X, {{A, B, C}, {D, E}}).
Let (Y, dY ) =

(
{A, B, C},

(
0 2 3
2 0 1
3 1 0

))
. Then, sep (Y ) = 1 and hence ηY = 1.

Therefore,

R̂
(
{A, B, C},

(
0 2 3
2 0 1
3 1 0

))
= ({A, B, C}, {A, {B, C}}),

and we see that {A, B, C} gets further partitioned by R̂.

It is interesting to point out that the similar constructions of a non-excisive
functor in Mgen would not work, see [19].
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Fig. 13. Metric space used to prove that the functor R̂ : Minj → C is not excisive.
The metric is given by the graph distance on the graph.

The case ofMiso One can easily describe allMiso-functorial clustering schemes.
Let I denote the collection of all isometry classes of finite metric spaces. For each
ζ ∈ I let (Xζ , dXζ

) denote an element of the class ζ, Gζ the isometry group of
(Xζ , dXζ

), and Ξζ the set of all fixed points of the action of Gζ on P(Xζ).

Theorem 9 (Classification of Miso-functorial clustering schemes, [19]).
Any Miso-functorial clustering scheme determines a choice of pζ ∈ Ξζ for each
ζ ∈ I, and conversely, a choice of pζ for each ζ ∈ I determines an Miso-
functorial scheme.

Representable Clustering Functors. In what follows, M is either of Minj

or Mgen. For each δ > 0 the Vietoris-Rips functor Rδ : M → C can be de-
scribed in an alternative way. A first trivial observation is that the condition that
x, x′ ∈ X satisfy dX(x, x′) ≤ δ is equivalent to requiring the existence of a map
f ∈ MorM(Δ2(δ), X) with {x, x′} ⊂ Im(f). Using this, we can reformulate the
condition that x ∼δ x′ by the requirement that there exist z0, z1, . . . , zk ∈ X with
z0 = x, zk = x′, and f1, f2, . . . , fk ∈ MorM(Δ2(δ), X) with {xi−1, xi} ⊂ Im(fi)
∀i = 1, 2, . . . , k. Informally, this points to the interpretation that {Δ2(δ)} is the
“parameter” in a “generative model” for Rδ.

This suggests considering more general clustering functors constructed in the
following manner. Let Ω be any fixed collection of finite metric spaces. Define a
clustering functor

CΩ : M → C
as follows: let (X, d) ∈ ob(M) and write CΩ(X, d) = (X, {Xα}α∈A). One declares
that points x and x′ belong to the same block Xα if and only if there exist

– a sequence of points z0, . . . , zk ∈ X with z0 = x and zk = x′,
– a sequence of metric spaces ω1, . . . , ωk ∈ Ω and
– for each i = 1, . . . , k, pairs of points (αi, βi) ∈ ωi and morphisms fi ∈

MorM(wi, X) s.t. fi(αi) = zi−1 and fi(βi) = zi.

Also, we declare that CΩ(f) = f on morphisms f . Notice that above one can
assume that z0, z1, . . . , zk all belong to Xα.

Definition 12. We say that a clustering functor C is representable whenever
there exists a collection of finite metric spaces Ω such that C = CΩ. In this case,
we say that C is represented by Ω. We say that C is finitely representable
whenever C = CΩ for some finite collection of finite metric spaces Ω.
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As we saw above, the Vietoris-Rips functor Rδ is (finitely) represented by
{Δ2(δ)}.

Representability and excisiveness. Notice that excisiveness is an axiomatic
statement whereas representability asserts existence of generative model for the
clustering functor, and interestingly they are equivalent.

Theorem 10 ([19]). Let M be either of Minj or Mgen. Then any clustering
functor on M is excisive if and only if it is representable.

A factorization theorem. For a given collection Ω of finite metric spaces let

TΩ : M → M (7)

be the endofunctor that assigns to each finite metric space (X, dX) the metric
space (X, dΩ

X) with the same underlying set and metric dΩ
X given by the maximal

metric bounded above by WΩ
X , where WΩ

X : X × X → R+ is given by

(x, x′) �→ inf
{
λ > 0| ∃w ∈ Ω andφ ∈ MorM(λ · ω, X)with {x, x′} ⊂ Im(φ)

}
,
(8)

for x �= x′, and by 0 on diag(X×X). Above we assume that the inf over the empty
set equals +∞. Note that WΩ

X (x, x′) < ∞ for all x, x′ ∈ X as long as |ω| ≤ |X |
for some ω ∈ Ω. Also, WΩ

X (x, x′) = ∞ for all x �= x′ when |X | < inf{|ω|, ω ∈ Ω}.
Theorem 11 ([19]). Let M be either Mgen or Minj and C be any M-functorial
finitely representable clustering functor represented by some Ω ⊂ M. Then, C =
R1 ◦ TΩ.

This theorem implies that all finitely representable clustering functors in Mgen

and Minj arise as the composition of the Vietoris-Rips functor with a functor
that changes the metric.

A Uniqueness theorem for Mgen. In Mgen clustering functors are very
restricted, as reflected by the following theorem.

Theorem 12 ([19]). Assume that C : Mgen → C is a clustering functor for
which there exists δC > 0 with the property that

– C(Δ2(δ)) is in one piece for all δ ∈ [0, δC], and
– C(Δ2(δ)) is in two pieces for all δ > δC.

Then, C is the Vietoris-Rips functor with parameter δC. i.e. C = RδC
.

Recall that the Vietoris-Rips functor is excisive.

Scale invariance in Mgen and Minj . It is interesting to consider the effect
of imposing Kleinberg’s scale invariance axiom on Mgen-functorial and Minj-
functorial clustering schemes. It turns out that in Mgen there are only two
possible clustering schemes enjoying scale invariance, which turn out to be the
trivial ones:
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Theorem 13 ([19]). Let C : Mgen → C be a clustering functor s.t. C ◦ σλ = C
for all λ > 0. Then, either

– C assigns to each finite metric space X the partition of X into singletons, or
– C assigns to each finite metric the partition with only one block.

By refining the proof of the previous theorem, we find that the behavior of any
Minj-functorial clustering functor is also severely restricted [19].

5.4 Results for Hierarchical Clustering

Example 4 (A hierarchical version of the Vietoris-Rips functor). We
define a functor

R : Mgen → P
as follows. For a finite metric space (X, dX), we define (X, dX) to be the per-
sistent set (X, θVR

X ), where θVR
X (r) is the partition associated to the equivalence

relation ∼r. This is clearly an object in P . We also define how R acts on maps
f : (X, dX) → (Y, dY ): The value of R(f) is simply the set map f regarded as
a morphism from (X, θVR

X ) to (Y, θVR
Y ) in P. That it is a morphism in P is easy

to check.
Clearly, this functor implements the hierarchical version of single linkage clus-

tering in the sense that for each δ ≥ 0, if one writes Rδ(X, dX) = (X, PX(δ)),
then PX(δ) = θVR

X (δ).

Functoriality over Mgen: A uniqueness theorem. We have a theorem of
the same flavor as the main theorem of [51], except that one obtains existence
and uniqueness on Mgen instead of impossibility in our context.

Theorem 14 ([15]). Let H : Mgen → P be a hierarchical clustering functor
which satisfies the following conditions.

(I) Let α : Mgen → Sets and β : P → Sets be the forgetful functors (X, dX) →
X and (X, θX) → X, which forget the metric and persistent set respectively,
and only “remember” the underlying sets X. Then we assume that β ◦ H = α.
This means that the underlying set of the persistent set associated to a metric
space is just the underlying set of the metric space.

(II) For δ ≥ 0 let Δ2(δ) = ({p, q}, ( 0 δ
δ 0

)
) denote the two point metric space with

underlying set {p, q}, and where dist(p, q) = δ. Then H(Δ2(δ)) is the persis-
tent set ({p, q}, θΔ2(δ)) whose underlying set is {p, q} and where θΔ2(δ)(t) is
the partition with one element blocks when t < δ and is the partition with a
single two point block when t ≥ δ.

(III) Write H(X, dX) = (X, θH), then for any t < sep (X), the partition θH(t)
is the discrete partition with one element blocks.

Then H is equal to the functor R.
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Extensions. There are extensions of the ideas described in previous sections
that induce functorial clustering algorithms that are more sensitive to density,
see [16,19].

6 Discussion

Imposing metric and or category structures on collections of datasets is useful.
Doing this enables organizing the landscape composed by several algorithms
commonly used in data analysis. With this in mind is possible to reason about
the well posedness of some of these algorithms, and furthermore, one is able to
infer new algorithms for solving data and shape analysis tasks.
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